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Apparatus in which a liquid is cooled passing through a bundle of "parallel" tubes (fed 
by a common source) is used actively in industry. This includes tubular heat exchangers, 
systems for pumping heated oil along parallel pipelines, etc. Operating practice of them 
indicates that in some cases some of the tubes do not operate in the required production 
regime, although all of the tubes are under identical conditions. In this work a study is 
made of disturbance of symmetry for flow of a liquid being cooled through a pair of identical 
parallel tubes. 

It was demonstrated in [i] that the head-discharge characteristic (HDC) of flow of cool- 
ing viscous liquid contains a descending section within whose limits instability is possible. 
In [2], where heating was not supplied to the input, but occurred as a result of dissipation, 
a similar HDC was obtained, and a study was made of jumps in delivery with a smooth change 
of pressure in the vicinity of the limits of the descending section. However, with record- 
ing of delivery for the descending section of the HDC from the point of view of a point sys- 
tem considered in [2], it is stable. Statement of the problem for two tubes [3] makes it 
possible to consider possible disturbance of flow symmetry. In the case of a liquid being 
cooled, solution of this problem indicates that nonsymmetrical flows form with the existence 
of lower values of pressure than in [2, 3]. 

i. We consider cooling by a viscous incompressible liquid with flow through two paral- 
lel joined tubes with a prescribed common delivery. With a series of simplifying assump- 
tions [3] flow is described by the following set of equations in dimensionless variables: 

0@/0~ § ohO@/O ~ = - - 0 ~  -- ~(0 : - -0~ ) ;  

oeja  +  ,2oe/a  = + p(e: - 

1 1 

o 0 

(1.1) 

(l.2) 

(l.3) 

= ~ i  + m2, ( 1 . 4 )  

w h e r e  @ = ( i ' -  T o ) U / R T o = ;  m = c p Q / ( 2 ~ r ) ;  ~ = 2 a t / ( c p r ) ;  g = z / s  ~ = a i / ~ ;  ~ = A p c p r 3 /  
(16~(T0)as g = P0exp(U/RT); T is liquid temperature; To, temperature of the surroundings; 
Q, delivery; c, heat capacity; p, liquid density; a, heat-transfer coefficient; r, radius; 
s tube length; z, coordinate along the tube; t, time; a:, heat-transfer coefficient between 
tubes; Ap, pressure drop in the tubes between the inlet and outlet; ~, liquid dynamic vis- 
cosity; indices 1 and 2 relate to the first and second tubes. In recording the temperature 
dependence for viscosity in Eq. (1.3) use is made of the Frank-Kamenetskii transform [4]. 

In contrast to [3], dissipative heat release is assumed to be negligibly small and, 
therefore, the corresponding terms in the equations are omitted. The effects in question 
are determined by the condition at the inlet 

[ = o :  o l = e , = e o ,  Oo=(r~ (1 .5)  

(T o is liquid temperature at the inlet). In addition, in (i.i) and (1.2) heat exchange be- 
tween tubes is considered. Known parameters are assumed to be total liquid delivery m, 
thermal head at the inlet to the tubes @0, and heat-exchange coefficient between the tubes 
~. Steady temperature profiles, liquid delivery in the tubes @i, @~, ~:, m2, and pressure 
drop N are determined. 
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2. First let heat exchange between the tubes be absent (6 = 0). Then according to 
(i.i), (1.2), and (1.5), the steady profile @i(~) depends only on ~i, and @~(~) depends only 
on ~2. Whence it follows that each of the tubes has the HDC found in [i]. The character- 
istic for the system of two tubes is obtained by adding their HDC. In fact, since pressure 
drop H in both tubes is the same, delivery m(H) = ml(H) + m2(H). As indicated in [I], with 
@0 > @min the HDC (for one tube) is N-shaped, and in region Hd < H < Hu each value of H re- 
lates to three values of m (slow, intermediate, high). Combination of them gives six 
branches for ~(H). As a result of this, the HDC for the system of two tubes in question 
are obtained and are shown in Fig. i (alongside curves for values of @0); N-shaped curve 
abef, similar to the HDC for one tube, corresponds to symmetrical flow with uniform delivery 
and temperature profiles in both tubes, branch bcge corresponds to nonsymmetrical flows, 
section bc corresponds to the case when in one 
in the other tube with intermediate delivery. 
in one tube and high delivery in the other, ge 
mediate and high delivery values in the tubes. 
solutions with small perturbations (see below) 
sections be and ge are unstable (broken curves 

tube flow is realized with low delivery, and 
Section cg relates to flow with low delivery 
relates to flow with a combination of inter- 
A study of the stability of steady-state 
indicates that flows corresponding to HDC 
in Fig. i). 

With m < m, total delivery is distributed equally between the tubes, liquid cooling in 
the tubes proceeds in the same way, and symmetrical flow is realized. On reaching m, this 
flow becomes unstable, development of nonsymmetric flow with m > m, proceeds in a soft regime, 
and the pressure drop decreases (section bc in Fig. l). As m increases a greater part of 
the liquid will flow through one tube, and this means that the liquid temperature in this 
tube will be higher than in the other. Nonsymmetrical flow remains until m < m***, and in 
this way in section cg the pressure drop increases. With m = m*** there is restoration of 
disturbed symmetry (in a hard regime), and the pressure drop falls jumpwise (g + g' in Fig. 
i). With a further increase in total delivery flow remains symmetrical. If now ~ decreases, 
then disturbance of flow symmetry proceeds with ~ = m** in a hard regime, and restoration pro- 
ceeds with ~ = m, in a soft regime. If @ 0 decreases, values of ~** and ~*** approach each 
other, then a hard regime changes into a soft regime and, finally, the region of nonsymmetri- 
cal flow disappears. 

Shown in Fig. 2 is the region for existence of nonsymmetrical flows, and it lies be- 
neath curve ABCE. Curve ABCD corresponds to the boundary of instability for symmetrical 
flow, so that DCE is the boundary of the region for bistability. If m increases from low 
values, then disturbance of flow symmetry in a soft regime proceeds in line AB, symmetrical 
flow again becomes stable in line BCD, and restoration of flow symmetry in a hard regime 
proceeds in line CE. There is a region of values @B < @0 < @C in which disturbance and res- 
toration of flow symmetry proceeds in a soft regime (see the HDC in Fig. i with e0 = 3.08). 
With@ 0 < e B all of the critical phenomena degenerate, and in the HDC sections with a nega- 
tive flow are absent. 

For flow of ethylene glycol heated initially to T o = 120~ through a tube i m long and 
i cm in diameter at ambient temperature T o = 20~ calculation using values of p, c, p from 
[5] and heat-transfer coefficient = = i0 W/(m='K) gives a delivery value with which symmetry 
is disturbed, Q... = 0.13 cm3/sec. In this way head Ap = 1.96 Pa. Symmetry is restored with 
Q*** = 0.69 cm37sec. 

From the method of plotting the HDC for two tubes it follows that in those cases when 
the HDC is nonmonotonic (nonmonotonicity may be due to different reasons) the effect of flow 
symmetry disturbance might also be expected in a system of n parallel tubes. 
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3. With ~ ~ 0 steady-state values of delivery with nonsymmetrical flow are not deter- 
mined from the HDC for one tube. In addition, the branch for symmetrical flow in the HDC 
(abef in Fig. I) does not change, since with O I = @2 there is no heat exchange between the 
tubes. After substituting ml = m/2 + v, ~2 = ~/2 - v, equality (1.4) is satisfied homolo- 
gously, and steady-state solution (i.i), (1.2) with boundary condition (1.5) takes the form 

0~ ----- [(~[~ d- q q- 2v) exp (k~)  -- ( ~  -- q -F 2v) exp (k~)]Oo/(2q); (3.1) 

O 2 ---- [(r -Jr- q - -  2v) exp (k~ )  - -  (co~ - -  q - -  2v) exp (k2~)lOo/(2q), ( 3 . 2 )  

w h e r e  q = 1/~j~2~ 2 + 4v  ~ (1 -b 2~);  k~ - -  2 q - -  (t § {~) ~ .  k2 = 2 - -  q -  (t -b ~) 0) 2 __ 4v 2 ' (02 -- 4v 2 

Equation (1.3) is rewritten as 

I 1 

F (v) ~-- 0, F (v) = ((o/2 + v) j" exp ( - -  O1) d~ - -  ((o/2 - -  v) ~ exp ( - -  02) d~. ( 3 . 3 )  
o o 

Substitution of (3.i) and (3.2) in (3.3) gives an equation for determining v which with all 
values of parameters has the solution v = 0, which relates to symmetrical flow. Appearance 
of solutions; v ~ 0 (corresponding to nonsymmetrical flows) relates to values of parameters 
@0, ~, and B which satisfy the equation Fv(0) = 0 (the index represents differentiation with 
respect to v) having the form 

1 

o 

(3.4) 

With ~ = 0 in Fig. 2, Eq. (3.4) relates to curve ABCD. With $ ~ 0 the qualitative form of 
the curve in plane (m, @0) is retained, and with an increase in ~ the curves shift upward. 
Values of parameters relating to disappearance of nonsymmetrical flow (v ~ 0) are determined 
from the condition 

Fo( ) = 0, (3.5) 

considered together with (3.3). With ~ = 0 the solution is shown in Fig. 2 (curve CE). By 
means of (3.3)-(3.5) the plane of parameters (m, 8) is broken down into regions of realizing 
symmetrical and nonsymmetrical flows (Fig. 3). Boundaries of this region are plotted with 
different w~lues of @0 (shown on the lines). Within region abg only nonsymmetrical flows 
are possible; outside region abe only symmetrical flows are possible, and gce bounds the 
region of bistability. It can be seen that an increase in $ (as also a reduction in @0) 
reduces the region for nonsymmetrical flows. 

Shown :in Fig. 4 is the HDC with ~ = 0.i for two values of @0- In contrast to the solu- 
tion with $ = 0 (see Fig. i), the point for loss of stability of symmetrical flow does not 
coincide with the extreme of the characteristic. 

4. Stability of steady-state solutions has been studied by means of a linearized set 
of equations for small deviations Un($) exp (X~) and wexp (X~) from steady-state solutions 

@ns($), Vs: 

(4.1) 
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(0)/2 -- v~)dz=/d~ = --(1 q- ~ q- ~.)z, + [~z a q- d6)Jd~;  ( 4 . 2 )  

I 1 

-~ [t --  (0)/2 + vs) zal exp (-- @a, ) d~ + ~ [i + (~/2 -- v~) z 2] exp (-- 02~ ) d~ = 0, (4.3) 
0 0 

z,~(0)  = 0 ,  

where z n = Un/W , n = 1, 2. 

S u b s t i t u t i o n  o f  s o l u t i o n s  ( 4 . 1 )  and  ( 4 . 2 )  in  ( 4 . 3 )  l e a d s  t o  t h e  e q u a t i o n  f ( ~ )  = 0 f o r  
d e t e r m i n i n g  t h e  n a t u r a l  v a l u e s  o f  ~. The s t e a d y - s t a t e  s o l u t i o n  i s  s t a b l e  i f  f u n c t i o n  f ( ~ )  
o f  complex v a r i a b l e  ~ does  n o t  r e v e r t  t o  z e r o  in  t h e  r i g h t - h a n d  h a l f - p l a n e  Re~ > 0. The 
number o f  z e r o s  f o r  f u n c t i o n  f ( ~ )  in  t h e  r i g h t - h a n d  h a l f - p l a n e  may be d e t e r m i n e d  by means 
o f  t h e  a rgument  p r i n c i p l e  [6] 

N -- P = ~ hc arg ] (~), (4.4) 

where N is number of zeros; P is number of poles for f(l) in the right-hand half-plane, and 
the right-hand part means the increment in the argument of function f(%) with a circuit of 
contour C embracing the right-hand part of the half-plane divided by 2~. It is convenient 
to select a semicircle of infinite radius as contour C. 

Function f(%) with ~ ~ 0 is quite cumbersome and, therefore, below for simplicity equa- 
tions are provided with ~ = 0, and then differences will be indicated occurring with 8 ~ 0. 
With 8 = 0, 

2 1 

(4.5) 

In the right-hand half-plane this function has no poles. In order to determine the right- 
hand part in (4.4) consideration should be given to the corresponding contour in complex 
plane f which is a reflection of contour C. The whole infinite semicircle (~ § ~) turns 

into a point at the real axis lying to the right of zero fexp( - -@ns)d~>0 The imag- 
n = l  0 / 

inary axis (~ = iv) is reflected in a curve 

l!I I )I i • , ] (iv) = 1 - -  On,v -1 sin ~ ~ exp (-- 0,,~) d~ + i O,,~v -1 X 
~ I  0 

It can be seen that the sign of the imaginary part of f(iv) is governed by the sign of v. 
Whence it follows that the positive (negative) imaginary axis is reflected in a curve lying 
above (beneath) the real axis of plane f. Reflection of the zero point for plane ~ lies 
on the real axis to the left of point f(~): 

21 2 

1(0) = E j' ( t - -  ~0)7:0,,) exp (-- @,,)d~ = .~ dH/d0),~. ( 4 . 6 )  
~ 1 0  n = l  

Two cases are possible. 

i) The zero point for plane ~ is reflected at a point lying on the real axis to 
the right of the zero point If(0) > 0]. Then the reflection of contour C does not embrace 
the zero for plane f. Consequently, the increment of the argument f(%) equals zero and, 
according to (4.4), N = 0. This means that steady-state flow is stable. 

2) The zero point for plane ~ is reflected at a point lying on the real axis to 
the right of zero [f(0) < 0]. Then reflection of contour C embraces the zero for plane f. 
Since the direction of the circuit is maintained, then A C arg f(%) = 2~. According to (4.4), 
N = i means steady-state flow is unstable in this case. 
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In order to explain which sign of f(0) corresponds to one or another section of the 
HDC, it is sufficient to remember that for each tube the HDC has an N-shaped form similar 
to curve abef in Fig. i, whence it can be seen that for a given value of H the slope of the 
HDC in absolute value in section ab is greater than in be, which in turn (with the excep- 
tion of a small section to the right of point b) is greater than in ef: 

dII } >---- 
d~ ab 

dII dII 

Since the HDC for a system of two tubes is obtained by adding the HDC for both tubes, it 
is easy to establish that a condition for stability of steady-state flow f(0) > 0 is ful- 
filled in sections a b, bc, cg, and ef (see Fig. i), and f(0) < 0 is fulfilled in be and eg, 
and flow is unstable. The boundary of stability is determined from the equality f(0) = 0, 
which for sNmnnetrical flow (v s = 0) coincides with the condition for origination of nonsym- 
metrical flows (3.4), and for nonsymmetrical flow (v s ~ 0) it coincides with the condition 
for merging and disappearance of nonsymmetrical flows (3.5). 

With ~ ~ 0 for symmetrical flow v s = 0, @s = O0 exp (-25/~) we have 

1 I 

0 0 

Since the first integral does not depend on ~, and the second decreases with an increase 
in ~, then the region for instability of symmetrical flow contracts. In the descending 
branch of the HDC for symmetrical flow sections develop close to the extremes relating to 
stable flows; (see Fig. 4). The larger these sections, the greater the ~. With sufficiently 
large $ the whole of the descending branch of the HDC becomes stable, and the effect of dis- 
turbance of symmetry disappears. 

The authors are grateful to V. I. Boyachenko, D. A. Vaganov, V. A. Vol'pert, P. V. Zhir- 
kov, A. G. Merzhanov, and A. M. Stolin for useful discussion of the work. 

i. 

2o 

3. 

4. 

5. 

6. 

LITERATURE CITED 

J. R. A. Pearson, Y. T. Shah, and E. S. A. Vieira, "Stability of nonisothermal flow 
in channels, i. Temperature-dependent Newtonian fluid without heat generation," Chem. 
Eng. Sci., 28, No. ii (1973). 
A. G. Merzhanov and A. M. Stolin, "Hydrodynamic analogs for the phenomena of ignition 
and extinction," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1974). 
V. V. Grachev and E. N. Rumanov, "Disturbance of flow symmetry as a consequence of 
thermal instability," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1984). 
D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], 
Nauka, Moscow (1967). 
R. Reid, J. Prausnitz, and T. Sherwood, Properties of Gases and Liquids [Russian trans- 
lation], Khimiya, Leningrad (1982). 
M. A. Lavrent'ev and B. V. Shabat, Methods of Function Theory for a Complex Variable 
[in Russian], Nauka, Moscow (1973). 

705 


